
SNflPSHDT

SNAPSHOT 64
ENHANCEMENT

DISK

The perfect companion

for your Snapshot 64

CSM SOFTWARE, INC.

SNAPSHOT 64

ENHANCEMENT DISK

MANUAL

Programming and manual by BILL MELLON.

Copyright 1986 by CSM SOFTWARE INC.

INTRODUCTION

Thank you for purchasing the SNAPSHOT 64 ENHANCEMENT DISK! This disk

includes several utilities for use with programs archived by the
SNAPSHOT 64 cartridge. These utilities are NOT required for the normal

use of SNAPSHOT 64 - they are simply the aids most frequently requested

by SNAPSHOT 64 owners. The utilities on the ENHANCEMENT DISK include:

NEW BOOT PROCESS - The boot process has been updated, allowing

SNAPSHOT 64 to successfully archive more programs than ever! The new

boot can be added to previously SNAPSHOT1ed programs separately or
in combination with the other options below.

FAST BOOT MAKER - Adds a fast loader to programs already archived by

SNAPSHOT 64. Can also be used to restore the original "slow" boot to

the program if desired.

CARTRIDGE MAKER - Creates a cartridge version of virtually any

SNAPSHOT1ed program! The program will download and run from the

cartridge in just a few seconds!

COMPRESSION UTILITIES - For examining the compressed files in a

SNAPSHOT*ed program. Decompress a file to memory, examine or modify

it, then recompress it back to disk.

MEMORY USE DISPLAY - Displays the memory areas used by a SNAPSHOT'ed
program.

All of these utilities have been carefully designed for convenience and
reliability. Even a novice can create a cartridge or install the fast

boot! Of course, each utility is thoroughly explained in this manual,
just in case any questions arise.

Besides covering the utilities above, this manual will also provide

detailed information about the files created by SNAPSHOT 64. You can use
this information to investigate SNAPSHOT1ed programs.

SNAPSHOT 64 ENHANCEMENT DISK MANUAL PAGE 1

UTILITY PROGRAMS

UPDATED BOOT PROCESS

The main boot process has been updated to enhance its abilities. If you
have an original program that SNAPSHOT 64 does not seem to archive
correctly, this new boot process may solve the problem. Try itl The new

process is available as an option with the fast load or cartridge making
utilities, or it can be used separately (see below). The new boot is
designed to be 100% compatible with the original boot, so you should use
it whenever possible. If you ever experience trouble with the new boot,
you can always go back and replace it with the original boot. However,
we haven't run across a case yet where this was necessary!

FAST BOOT MAKER

The FAST BOOT MAKER utility (FBM) is primarily used to add CSM's own
fast loader to previously SNAPSHOT1ed programs. It can also be used to
restore the "slow" boot if desired. The new UPDATED BOOT PROCESS

mentioned above can be included with either fast or slow option, or you

may choose the original boot process instead.

In order to familiarize yourself with the FAST BOOT MAKER utility,

please pick out a previously SNAPSHOT'ed program to use as an example in

the following discussion. Start by inserting the SNAPSHOT 64 ENHANCEMENT
DISK in your disk drive. Now type:

LOAD "FAST*",8

RUN

The first question you'll be asked is whether you want the FAST or SLOW

load option. Enter either F or S and hit RETURN (the default is F if you

just hit RETURN). Next, you111 be asked if you want the NEW (updated) or
OLD (original) boot process. Enter either N or 0 (the default is N).
Finally, you'll be asked to enter two characters to identify the program

you want to modify (in case your disk contains more than one SNAPSHOT'ed
program). Enter the same two characters that you supplied when the
program was originally SNAPSHOT'ed. You'll be instructed to insert the

disk containing your archived program. Hit RETURN to continue.

The FBM utility will check the boot program that is currently installed

on the disk. For instance, if the two characters you entered were "XX",

it will check for the file "XXF". If the file is not found, you'll be

informed in case you inserted the wrong disk. Then you'll be asked if

you want to continue the process or not. Enter a "Y" and press RETURN to

continue. Any other entry will abort the process. If the file was found

but is not a SNAPSHOT 64 boot file, you'll be informed and given the

choice of continuing. WARNING - if you continue, the file will be

scratched! Finally, the FBM utility will check the free space on the

disk (if you switch from the slow boot to the fast boot, you must have

at least 5 blocks free on the disk). If everything checks out, FBM will

install the boot you've chosen. That's all there is to it!

SNAPSHOT 64 ENHANCEMENT DISK MANUAL PAGE 2

CARTRIDGE MAKER

The CARTRIDGE MAKER utility (CM) can be used to convert virtually any

SNAPSHOT'ed program into a cartridge. The CM utility will create one to

three files on disk containing a special version of your program. These

files can be directly "burned" onto EPROMs using an EPROM programmer

such as the PROMENADE. When the EPROMs are mounted on a standard 4-slot

bank-switch cartridge board and plugged into the computer, the program

will download itself, switch off the cartridge and execute

automatically. NO special knowledge is required to create a cartridge

except for burning the EPROMs - and we give you the correct commands for

that (PROMENADE only). The PROMENADE, cartridge boards, EPROMs and other
EPROM supplies are all available separately from CSM.

Please select a program to use as an example in the following

discussion. Insert your SNAPSHOT 64 ENHANCEMENT DISK in the drive. Type:

LOAD-CART*",8

RUN

First you'll be asked for two characters to identify the program you

wish to convert to cartridge. Next you'll be asked whether you want the

NEW or OLD boot process. Enter N or 0 and hit RETURN. The default is the

new boot, which should be chosen unless you know it causes a problem

with the particular program you're converting iwery unlikely). Then

you'll be asked to enter a title. The title will be displayed on the

screen while the program is downloaded from cartridge (which won't be

long!). The title is limited to a maximum of 25 characters. It will be

automatically centered on the screen when displayed.

Next you'll be prompted to insert the disk containing your SNAPSHOT'ed

program. Hit RETURN when ready. The CM utility will check the disk to

make sure enough space is left to hold the cartridge version's files.

The size of the cartridge files will vary depending on the length of the

"D" and "E" files of your program (i.e. the "XXD" and "XXE11 files if the

two characters you entered were "XX"). These files contain most of the
archived program, in compressed format. If there is not enough space

left for the cartridge files, CM will tell you and then terminate. No

files will be created. This can only happen if you have other programs

on the same disk. In this case, you should copy your SNAPSHOT'ed program

files to a blank disk and re-run the CM utility.

When everything is ready, CM will begin the conversion process. Since

the process is rather lengthy, you'll be told approximately how long it

will take (based on a 1541 drive). The program will stop and inform you
if any disk errors are encountered. When the process is completed, the

cartridge version will be stored in 1 - 3 files on the disk. Each file

requires a separate EPROM. CM will display each file's name, the type of

EPROM required and the correct command to be used when burning the EPROM

with the PROMENADE. You can use a different EPROM programmer but you'll

have to figure out the proper commands yourself. The names of the files

created will be based on the two letters you supplied, e.g. XXCARTO,

XXCART1, XXCART2. Only two types of EPROMs will ever be required:

27256 (32K) and 2764 (8K). CM will always use 32K chips unless the last

file is small enough to fit on an 8K chip (33 disk blocks or less). This
insures that the program will fit on a 4-slot board and is also the

least expensive configuration (at mid-1986 prices).

SNAPSHOT 64 ENHANCEMENT DISK MANUAL PAGE 3

Before burning the EPROMs specified by CM, you must determine the

correct programming voltage to use. Some chips require 12.5 volts and

others require 21 volts. Be sure you know the correct programming

voltage for your chips. It's usually written on the chip. If It Isn't,

it usually means 21 volts is required, but to be on the safe side try it

at 12.5 volts first. If 12.5 volts 1s too low, all that should happen is

the chip won't program correctly. The yellow PROMENADE light will flash

and you'll have to erase the chip before you try it at 21 volts. On the

other hand, if you use 21 volts when only 12.5 1s required, you'll

permanently danage the EPROM! That's why you should always start at 12.5

volts when in doubt. With 2764 chips, you can tell the programming

voltage even if it isn't written on the chip. If the chip 1s labeled

2764 A, it almost certainly requires only 12.5 volts. To our knowledge,

any other letter after the 2764, or no letter at all, means 21 volts is

required. When in doubt, always check the manufacturers specifications.

The programming voltage will determine the proper CONTROL WORD (CU) to
use in the PROMOS command. That's why we just use "CW" rather than a

specific number in the commands we give and why the message appears

about checking your manual (see below). The following table gives the
correct CW for each type of chip. Also given is the recommended PROGRAM
METHOD WORD (PMW) for each chip. The PMW 1s not as critical as the CW; a

"wrong" PMW shouldn't damage your chip. However, the PMW affects how

long the PROMENADE will take to program the chip, versus how reliable

the process will be. The PMW's we've given are conservative in that they

are very reliable but take a little longer. You may experiment with

other PMW's if you wish; the worst that should happen is that you'll

have to erase the chip and try another PMW if the chip doesn't program

properly. See your PROMOS manual for alternative PMW's. Even better, the

EPROM PROGRAMMERS HANDBOOK from CSM discusses CW's and PMW's in detail.

It also covers many other topics related to the PROMENADE, EPROMs and

cartridges, and comes with a disk containing many useful routines.

PROMOS COMMANDS FOR DIFFERENT CHIPS

VOLTS 2764 (8K) 27256 (32K)

12.b «>ir 4096,12287,0,6,6 *7T 4096,36863,0,230,6

21 *7T4096,12287,0,5,7 ^4096,36863,0,229,6

Once you've selected the right PROMOS commands from the table above for

the EPROMs specified by CM, you're ready to begin the programming

process. Turn off the computer, plug in the PROMENADE and turn the

computer back on. Now you must load the PROMOS (PROMENADE) software from

disk. (Note - due to their size, if you are programming 27256 chips you

CANNOT use the special HESMON/PROMOS/WEDGE cartridge. Also, you MUST use

PROMOS version 1.1 or higher for 2756 chips since version 1.0 has a bug

in the 27256 algorithm. If you don't have version Id, contact CSM for

an update.) Insert your PROMOS 1.1 disk and type LOAD":*",8. When PROMOS

1s loaded in, type RUN. You should see the PROMOS startup message on the

screen (including the version number) and the lights on the PROMENADE
should go out.

To demonstrate how to burn cartridge files onto EPROM using the

PROMENADE, suppose CM displays the following information at the end of

the conversion process:

SNAPSHOT 64 ENHANCEMENT DISK MANUAL PAGE 4

FILE NAME EPROM PROMOS COMMAND

XXCARTO Z7Z56 <W4096,36383,0, CW, PMW

XXCART1 2764 QT4096 >12287,0,CW,PMW

CHECK YOUR SNAPSHOT 64 ENHANCEMENT DISK

MANUAL FOR THE PROPER CONTROL WORD (CW)
AND PROGRAM METHOD WORD (PMW) FOR YOUR
PARTICULAR CHIPS.

In this example, you would find two files on the disk called XXCARTO and

XXCART1. All cartridge files start at location 4096 ($1000) when loaded
into memory. Since the "0" file requires a 32K (27256) chip, the file
will be up to 130 disk blocks long (up to 32768 or $8000 bytes) and end

at or before 36863 ($8FFF) in memory. Regardless of where the file
actually ends in memory, we'll burn an entire 32K of memory onto the

27256 EPROM. This way the PROMOS command for all 27256 files can follow

the same pattern. Similarly, since the "I11 file requires an 8K (2764)
chip, the file will be up to 33 blocks long (up to 8192 or $2000 bytes)

and will end at or before 12287 ($2FFF) in memory.

Insert the disk containing your cartridge files into the drive. Load the

first file into memory using ",8,1". In our example, you would use

L0AD"XXCART0",8,l. It's a good idea to zero the PROMENADE socket now -

type Z and hit RETURN. Pick up your first EPROM, lift the handle on the

PROMENADE socket and set the chip in the socket. The notch by pin 1 of

the chip MUST be to the left, matching the diagram on the PROMENADE.

Flip the handle down to lock the chip in place. Now type in the proper

PROMOS command from above and hit RETURN. Note that the first character

in the command is the PI character (shift up-arrow, next to RESTORE).

The red and yellow lights on the PROMENADE should come on. Once they go

out, the chip is programmed. Remove it from the PROMENADE. It's a good

idea to label the chip so you won't get it mixed up with any others. If

the yellow light is flashing, the chip did not get programmed properly.

Erase the chip and re-check everything before trying again. Any other

chips required are programmed the same way: Load the file with ",8,1".

Zero the PROMENADE with a "Z" command, then insert the chip with the

notch to the left. Type in the proper PROMOS command and hit RETURN.

Remove the chip when it's finished and label it.

To complete the cartridge, you must mount the chips on a PC4 bank-switch

cartridge board (available from CSM). This board has sockets for 4
EPROMS on it, numbered from 0 to 3. Each EPROM must go in a particular
socket, based on the name of the file burned on the EPROM. For example,

a chip with a file named "XXCARTO" burned on it would go in socket "0",

and so on. Socket "0" is the one closest to the board's edge connector

(the part that plugs into the computer). Before you mount the chips on
the board, however, you'll have to make a slight change at each socket

that will receive a 27256 chip. This procedure is covered in the PC4
board's instructions, but we wanted to make sure you have the
information handy in this manual.

Turn the board over to the back side (the side without the sockets on

it) with the edge connector towards you. Locate pin 27 of the socket. In
our example, it would be socket 0 - the socket closest to you. Pin 27

wouiuld be the second-to-last from the right end of the second row of
socket pins (remember, the socket is upside-down). Near pin 27 is a
small solder "dot" with a short, thick solder line leading to the pin.
The solder line will usually have a clean break through it,
disconnecting the dot from pin 27.

SNAPSHOT 64 ENHANCEMENT DISK MANUAL PAGE 5

To use a 27256 chip in the socket, you must place a "blob" of solder
across the break so the dot is CONNECTED to pin 27. Next, there is a

small solder line connecting pin 27 with pin 28 (the next pin to the
right). You must cut through this line with a sharp knife so pin 27 is
DISCONNECTED from pin 28. Be careful not to cut any other lines (or

yourself)! Once again, on each socket where a 27256 EPROM is to be used,
pin 27 must be CONNECTED to the nearby solder dot but DISCONNECTED from
pin 28. The exact opposite setup is required to prepare a socket for a

2764 EPROM (which is usually how the board is supplied). For a 2764, pin

27 must be DISCONNECTED from the solder dot and CONNECTED to pin 28.

For our cartridge example, socket 0 would have to be set up for a 27256

chip, since the file "XXCARTO" is burned on the 27256 chip. Likewise,
socket 1 would have to be set up for a 2764. Once the correct changes

are made, all that's left is to insert the chips in the sockets. Turn

the board right side up with the edge connector towards you. Place the

first EPROM over socket 0 (closest to you) with the notch on the chip to

the left. Make sure all the EPROM's pins are started in their proper

holes in the socket. Press the chip straight down into the socket as far

as it will go. Double-check the EPROM's pins again to make sure they're
in correctly. Now repeat the procedure to install the other EPROM(s).

That's it - your cartridge is ready to use! Turn the computer off and

insert the cartridge with the EPROMs face up. Turn the computer back on.

If you have a CSM Single Slot or CARDCO 5-Slot expansion board, you

don't have to turn off the computer. Just switch off the desired

cartridge slot and insert the cartridge with the EPROMs facing you.

Switch the cartridge slot back on and press the RESET button. When the

computer is powered up or RESET, you'll see your cartridge title appear

above the message "ARCHIVED BY SNAPSHOT 64". A couple seconds later your

program will be up and running at the exact spot it was SNAPSHOT'ed!

DE/COMPRESS UTILITY

The DE/COMPRESS utility (D/C) is designed as an aid to investigating
SNAPSHOT'ed programs. You may want to modify a program's operation,

alter its protection or simply learn more about how it operates. When a

program is archived with SNAPSHOT, most of the computer's RAM memory is

stored in compressed format to save space and load time. The RAM memory

from $1000 to $87FF (LOW memory) is compressed and stored in the "D"

file (e.g. "XXD"). The RAM memory from $8800 to $FFFF (HIGH memory) is
stored in the "E" file. Before you can examine a file, it must be
"decompressed" into memory. D/C lets you decompress and re-compress

these files easily.

The normal decompression process in SNAPSHOT'S main boot starts by

loading the compressed file into memory. The compressed memory itself
starts at $1000, but it's preceded by COMPRESSION TABLES at $0F10-0FFF.
This applies to both "D" and "E" files. Next, the file is decompressed

into the full $1000-87FF area. When the "D" file is decompressed, it is
left in this area. The "E" file, however, is transferred up to
$8800-FFFF after decompression. This means that the "E" file must be

decompressed FIRST; otherwise, it would wipe out the "D" file when it
was loaded in. Compression is just the reverse; first the $1000-87FF
area is compressed and stored in the "D" file, then the $8800-FFFF area
is moved down to $1000, compressed and saved in the "E" file.

SNAPSHOT 64 ENHANCEMENT DISK MANUAL PAGE 6

The D/C utility can be executed from BASIC or from a machine language

monitor. The monitor commands given below are compatible with HIMON

(from the disks supplied with CSM PROGRAM PROTECTION MANUALS VOL. I &

II). Other monitors will use the same or yery similar commands. Note -
the start address for executing D/C from a monitor is different than the

SYS address used when starting D/C from BASIC. This 1s because the
routine uses an RTS instruction to return to BASIC from a SYS command,

while it uses a BRK command to return to the monitor. To execute the D/C
utility from BASIC, type:

L0AD-DE*",8

RUN

To execute D/C from a monitor:

L"DE*\08

G 0814

D/C will ask whether you want to COMPRESS or DECOMPRESS a file. Enter C

or D as desired. Next, you'll be asked the question "LOW or HIGH memory

?". When decompressing, your answer indicates whether you want the
memory left in the LOW area ($1000-87FF) after decompression or
transferred to the HIGH area ($8800-FFFF). Likewise, when compressing,

your answer indicates whether the HIGH memory should be transferred down

to the LOW area first. Enter L or H to indicate your choice. Since the

I/O devices and the BASIC and KERNAL ROMs He "on top" of the HIGH area,

it is usually more convenient to leave files in the LOW area after

decompression, where they're more accessible to a monitor. You would

also choose L when you want to compress a file you've been working on in

the LOW area. Reneober, the LOU/HIGH question really Indicates where you

want to WORK with the mory rather than where It's normally located.

Its normal location is indicated by the original file name (see below).

The final question D/C asks is for a FILENAME. When decompressing, this

file will be loaded at $0F10 first, as explained above. Likewise, after

compressing, the compressed memory will be stored on disk under the name

you give. You may use the "@0:" prefix in the name to replace an

existing file (if you're daring). The original compressed files follow

the convention of two characters plus "D" or "E". Your file names DO HOT

have to follow this convention. This gives you more flexibility if you

want to experiment with several versions of the same original file.

However, we suggest that you retain the "D" or "E" in the name somewhere

to remind you where the file resides in memory. If you want SNAPSHOT'S

main boot to load your modified files, you'll have to rename them to

follow the normal convention. Be sure to save a copy of the original
files under other names, e.g. "ORIGINAL XXD".

Unlike the previous questions, answering the filename question is

optional. If you just hit RETURN, no disk access will be done. This is

more useful than it sounds. For instance, suppose you've been working on

a file in LOW memory and you want to save a backup copy eyery once in a

while as you go. When you save a copy, the memory will be left in the

LOW area in COMPRESSED form. Before you can go back to working on it, it

must be decompressed. Of course, you could re-load it from disk and

decompress, but with large files this takes a couple minutes. Instead,

just choose the decompress option WITHOUT giving a filename, and you'll

be back in business in a second or two.

SNAPSHOT 64 ENHANCEMENT DISK MANUAL PAGE 7

MEMORY USE DISPLAY

The MEMORY USE (MU) utility displays the main areas of memory that are
used by a SNAPSHOT1ed program. The utility can be started from BASIC or
a machine language monitor.

To start MU from BASIC, use:

LOAD-MEM*",8

RUN

To use MU from most monitors, use:

L"»CM*-,08

G 0814

The only information MU needs is the two characters that identify the
program you want to display. MU will display a grid to summarize memory

usage in the $1000-FFFF area (the same area covered by the compressed
UDM and "E" files). Each square on the grid represents one "page" of
memory, 256 bytes. Each horizontal line of squares displays one "block"
of memory, 4096 bytes. The numbers along the sides and top identify the

address of the pages displayed. For instance, the first line displays

each page of memory from $1000 to $1FOO. The contents of each square on

the grid tell you how the corresponding page of memory is affected by

the SNAPSHOT1ed program. For an accurate picture of memory usage, you

MUST use the CLEAR MEMORY function (F3 key) before SNAPSHOT1ing the

program (you should be doing this anyway). The meaning of the symbols
used in the display are:

" " (space) - The page is not used by the program; it still contains
SNAPSHOT'S fill character ($BB).

"*" (asterisk) - The contents of the page vary; the page is not all
filled with the same value.

Any other character - The page is completely filled with the ASCII

value of that character. Characters whose ASCII value is not

normally displayable, e.g. screen color codes, are displayed in

reverse according to the following table:

True character Displayed as reverse of

$OO-1F 10-31) $Z0-3F (32-63)

$80-9F (128-159) $40-5F (64-95)

$CO-DF (192-223) $60-7F (96-127)
$EO-FF (224-255) $AO-BF (160-191)

In particular this means that a $00 byte is displayed as a solid

reverse block, and an $FF as a reverse checkerboard character. These

are the most common fill characters.

SNAPSHOT 64 ENHANCEMENT DISK MANUAL PAGE 8

SNAPSHOT FILES

The following section covers the various files created when you SNAPSHOT
a program. You DO NOT have to know any of this to use SNAPSHOT. This
information is for the hacker types who want to experiment with their
SNAPSHOT1ed programs. Although some of the following information is
summarized in the normal SNAPSHOT manual, and the CODE INSPECTOR
displays many of the key values, the detailed description here should
open up many new possibilities for investigating SNAPSHOT1ed programs.

We'll cover the "pre-boot" file first, and then the other files in
alphabetical order. Note that this is NOT the order in which they are
loaded into memory; the load order 1s:

PREBOOT, F, E, D, A, B, G, C

PRE-BOOT

The file that you load directly when you boot up a SNAPSHOT'ed program
is called the "pre-boot" file. It's the first file listed and the only
one whose name can be more than 3 letters long. All other files for this
SNAPSHOT1ed program will have 3-letter file names. The first two letters

will always be the same (for example, "XX") followed by a letter from A

to G (e.g. XXA, XXB, etc.). The preboot file loads in at $02A7-0303.
Like most autoboots, it uses the BASIC warm start vector at $0302 to

begin execution at $02A7. The preboot sets up the screen colors and
prints the file name that you used to load the preboot. Then it loads in
the main boot file, which is file "F" (e.g. XXF). The "F" file's name is

stored at $02FD-FF. The preboot file is identical in all SNAPSHOT'ed
programs except for the two identifying characters at $02FD-FE. After

the "F" file is loaded, these two characters are copied into it at
$O81E-1F. Then the "F" file is executed at $0820.

FILE A

The "A" file holds the memory from $0400 to $07FF, which is normally the

screen memory. However, the last 24 bytes ($07E8-FF) are not part of the

screen display and could contain important data. Also, some programs

relocate screen memory to another area, so the $0400-07FF area may
contain part of the program code or data.

FILE B

The "B" file contains the color RAM located at $D800-DBFF. Remember that
only the least significant 4 bits (lower nybble) of each byte of color

RAM is meaningful; the other 4 bits are totally random. Like screen
memory, the last 24 bytes of color RAM ($DBE8-FF) are not used for
display purposes and can hold useful values.

FILE C

The "C" file contains the program code from $0800-0FFF. It is the last
file loaded in.

SNAPSHOT 64 ENHANCEMENT DISK MANUAL PAGE 9

FILES D & E

The "D" and UEM files contain the programs RAM memory from the

$1000-87FF and $8800-FFFF areas, respectively, in compressed format.
BOTH files load in at $0F10 and follow the same format. The only

difference is that after being decompressed in the $1000-8700 area, the

MEM file is transferred up in memory to the $8800-FFFF area. Other than
that, the following discussion applies equally to both files. The
compressed memory is stored starting at $1000 and is preceded by two

COMPRESSION TABLES. The two tables are located at $0F10-87 and $0F88-FF

respectively. Each table contains one byte for eyery "page" of memory

(256 bytes) in the $1000-$8700 area ($78 pages total). The memory below
$1000 in the original program is not compressed; see the "A", "C" and
HG" files.

The first compression table, at $0F10, indicates which pages have been
compressed. The byte at $OF10 refers to the page at $1000, $OF11 refers

to $1100, $0F12 refers to $1200, and so on up to $0F87, which refers to
$8700. A page can only be compressed if it contains the same byte value
throughout the page. This doesn't have to be SNAPSHOT'S fill character

($BB) from the CLEAR function (F3 key); it can be any value as long as
the page is filled with it. When a page has been compressed, the

corresponding byte in the first table will be a $00. Any NON-zero value

will indicate that the page is HOT compressed. A non-zero byte actually

represents the location within the page of the first byte that didn't

match the previous byte(s). For instance, a $06 byte would indicate that
the first 6 bytes ($00-05 within the page) were the same but the seventh

byte was different. No compression would be done in this case.

The second compression table, at $0F88-FF, has a dual meaning depending

on whether the page is compressed or not. If a page is compressed, the

corresponding byte in the second table is the FILL VALUE, i.e. the value

that the page was originally filled with. If the page at $1400, for

example, was originally filled with the value $FF, then the byte at

$0F14 in the first table would be a $00 (meaning compressed) and the
byte at $0F8C in the second table would be the fill value $FF. No other
bytes are saved to represent that page. On the other hand, if a page is

NOT compressed, then the entire page will be stored in the area past

$1000. However, the page will not usually be stored in its original
location in this area. It will usually be stored lower down in memory

than originally, because previous compressed pages have been omitted

entirely. The page must be moved up in memory to reach its original

location. The second compression table tells where in the $1000 area the

page has been stored.

Let's look at an example to help clarify things. The decompression

routine works backwards in memory (we'll explain why in a minute) so

suppose the LAST couple bytes of the compression tables are:

FIRST TABLE $0F10-0F87: 03 00

SECOND TABLE $0F88-0FFF: 41 BB

The decompression routine starts at the end of the FIRST table, $0F87,

representing the page at $8700. Since the first table contains a $00

byte, page $8700 has been compressed. Consulting the last byte of the

SECOND table, $OFFF, tells the routine that the page was filled with the

value $BB (SNAPSHOT'S default fill value). The routine will then fill
page $8700 with $BB's to restore it.

SNAPSHOT 64 ENHANCEMENT DISK MANUAL PAGE 10

Next, the routine moves back one byte in the tables. The byte at $0F86

in the first table represents the page at $8600. The fact that the byte
is $03 in particular is not significant to the routine, just the fact
that it's NON-zera. Since the byte is non-zero, page $8600 was NOT
compressed. Therefore, the entire page will be stored somewhere past

$1000. Where? Well, the corresponding byte in the second table at $OFFE
is a $41, which means the page is stored at $4100 currently. The
decompression routine will copy the page at $4100-41FF up to $8600-86FF.
Since pages are copied UP in memory, this explains why the decompression

routine works backwards from the end of memory.

The routine continues backwards through the table until it reaches a
NON-compressed page which is already stored at its original location,

without having to be moved. This indicates that none of the pages lower

down were compressed either - if some had been compressed, this page

would have been moved down in memory, since this page is in its original

location, all the lower pages are too, and the decompression is
complete. This point will always be reached, even if it's all the way
back at $1000.

FILE F

File "F11 is the main boot program, and it's loaded in by the preboot.
"F" then loads the rest of the files. The "F" file is IDENTICAL in all

SNAPSHOT'ed programs, at least until the ENHANCEMENT DISK was released.

The fast loader, the cartridge routines and the updated boot all

required modifications to the "F" file (and only the "F" file). On the

disk, you'll find four versions of the "F" file. These files contain the

same four options that are available with the FAST BOOT MAKER utility.

In fact, you can install a new set of options by simply deleting the

original "F" file, copying the desired file to the disk and renaming it.

The names of the files indicate the options they provide:

FNF - Fast New (Updated) Boot

FOF - Fast Old Boot

SNF - Slow New (Updated) Boot

SOF - Slow Old Boot

FILE 6

The "G" file contains four different memory areas. The file is initially

loaded into memory at $0BB3-$0FFF. The four parts are moved to their

original locations at different times in the boot process. The memory

areas contained in this file are described below.

$0BB3-0BCF: This area holds the values for the SID (sound) chip at
$D400-D41C. However, these values don't really indicate what the

original contents of the SID chip were because the SID chip is

mostly WRITE-ONLY - reading the chip does not return the values that

were written there. This is why sound is a major limitation of ALL

memory-dumping cartridges. Fortunately, almost all programs with

sound will rewrite the SID values many times. Even if the initial

screen does not have the correct sound, subsequent screens usually

will. Also, most programs can be restarted once they're loaded in,

which usually restores the sound. By altering the SID values in the

"G" file yourself, you can sometimes correct the sound too.

SNAPSHOT 64 ENHANCEMENT DISK MANUAL PAGE 11

$OBDO-OBFE: This area holds the values for the VIC (video) chip at
$D000-D02E. Not all of these values were obtained by just reading
the VIC chip, since some of its registers return a different value

when read than what was written there. The most important examples

of this are the raster register at $D012 (and bit 7 of $0011) and

the interrupt mask register at $D01A. Special routines are used to

determine these values indirectly.

$0BFF: This byte is the 6510 processor's STACK POINTER (SP). It is
NOT the value that was in effect when the program was SNAPSHOT'ed,

for two reasons. First, the NMI interrupt used to start the SNAPSHOT

process (through the button on the cartridge) automatically pushes 3
bytes on the stack: the processor status byte (P) and the two-byte
program counter (PC). Second, SNAPSHOT itself stores 26 bytes on the
stack. This means that to find the true stack pointer value, you

must add $1D (29) to the value in $OBFF. The PC value on the stack
tells you where the program was executing when you interrupted it;

the values past it on the stack often indicate subroutine calls that

led the program to that point. The stack itself is at $0100-$01FF in
memory (see below for its location in file G). The stack pointer SP
is relative to $0100 - if SP is $23, the next AVAILABLE byte of the

stack is at $0123. Since the stack grows DOWNWARD in memory (i.e.
the stack pointer was DECREMENTED after the last byte was pushed on

the stack), the last USED byte of the stack would be at $0124.

The bytes pushed onto the stack by SNAPSHOT and the NMI interrupt

are listed below in REVERSE order. The contents of location $0094,

for instance, is the LAST byte pushed on the stack. We've broken the

values into four groups, with the start of each group indicated. The

contents of location $0094 will be found at $0100 + SP + $01, for

instance, and the PC HI byte will be found at $0100 + SP + $1D. Only
the low byte of such a calculation is significant - the true high

byte of the location on the stack is ALWAYS $01 regardless of the

calculated result. In other words, the low byte is always relative

to $0100 and so can never indicate a location past $01FF. This is
because the stack automatically "wraps-around" when either end is

reached ($0100 or $01FF).

SP+$01: $0094, 0095, 0096, 0097 (Key serial & tape values)

SP+$05: $DD04, DC04, DD05, DC05, DD06, DC06, DD07, DC07
(CIA Timers)

SP+$OD: $DDOD, DCOD, DDOO, DCOE, DCOF, DD02, DD03, DDOE, DDOF,
DC03, DC02 (Other CIA values)

SP+$18: Y, X, A, P, PC lo, PC hi (6510 Registers)

$OCOO-OFFF: This area of file G holds the original contents of

locations $0000-03FF in memory. Obviously, many important values are

stored here. The stack located at $0100-01FF in memory is stored at

$ODOO-ODFF in file G. Also, the location $0000 and $0001 values,
which control the memory configuration, are stored at $0C00-0C01.

This concludes our look at SNAPSHOT'S inner workings. Happy hunting!

SNAPSHOT 64 ENHANCEMENT DISK MANUAL PAGE 12

COPYRIGHT NOTICE

SNAPSHOT 64 ENHANCEMENT DISK

COPYRIGHT 1986 (C) BY CSH SOFTWARE, INC.

ALL RIGHTS RESERVED

This manual and the computer programs on the accompanying floppy disk,

which are described by this manual, are copyrighted and contain

proprietary information belonging to CSM SOFTWARE, INC.

No one may give or sell copies of this manual or the accompanying disk

or of the listings of the programs on the disk to any person or

institution, except as provided for by written agreement with
CSM SOFTWARE, INC.

No one may copy, photocopy, reproduce, translate this manual or reduce

it to machine readable form, in whole or in part, without the prior

written consent of CSM SOFTWARE, INC.

WARRANTY AND LIABILITY

Neither CSM SOFTWARE, INC. nor any dealer or distributor makes any

warranty, express or implied, with respect to this manual, the disk or

any related item, their quality, performance, merchantability, or

fitness for any purpose. It is the responsibility solely of the

purchaser to determine the suitability of these products for any

purpose.

In no case will CSM SOFTWARE INC. be held liable for direct, indirect or

incidential damages resulting from any defect or omission in the manual,

the disk or other related items and processes, including, but not

limited to, any interruption of service, loss of business, anticipated

profit, or other consequential damages.

THIS STATEMENT OF LIMITED LIABILITY IS IN LIEU QF ALL OTHER WARRANTIES,

EXPRESS OR IMPLIED, INCLUDING WARRANTIES OF MERCHANTABILITY AND FITNESS

FOR A PARTICULAR PURPOSE. CSM SOFTWARE INC. will not assume any other

warranty or liability. Nor do they authorize any other person to assume

any other warranty or liability for them, in connection with the sale ofe

their products.

UPDATES AND REVISIONS

CSM SOFTWARE, INC. reserves the right to correct and/or improve this

manual and the related disk at any time without notice and without

responsibility to provide these changes to prior purchasers of the

program.

IMPORTANT NOTICE

THIS PRODUCT IS SOLD SOLELY FOR THE ENTERTAINMENT AND EDUCATION OF THE

PURCHASER. IT IS ILLEGAL TO SELL OR DISTRIBUTE COPIES OF COPYRIGHTED

PROGRAMS. THIS PRODUCT DOES NOT CONDONE SOFTWARE PIRACY NOR DOES IT

CONDONE ANY OTHER ILLEGAL ACT.

